Definition:Filter on Set/Definition 2
Jump to navigation
Jump to search
Definition
Let $S$ be a set.
Let $\powerset S$ denote the power set of $S$.
A set $\FF \subset \powerset S$ is a filter on $S$ (or filter of $S$) if and only if $\FF$ satisfies the filter on set axioms:
\((\text F 1)\) | $:$ | \(\ds S \in \FF \) | |||||||
\((\text F 2)\) | $:$ | \(\ds \O \notin \FF \) | |||||||
\((\text F 3)\) | $:$ | \(\ds \forall n \in \N: U_1, \ldots, U_n \in \FF \implies \bigcap_{i \mathop = 1}^n U_i \in \FF \) | |||||||
\((\text F 4)\) | $:$ | \(\ds \forall U \in \FF: U \subseteq V \subseteq S \implies V \in \FF \) |
Also see
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text I$: Basic Definitions: Section $1$: General Introduction: Filters