Definition:Functor Creating Colimits
Jump to navigation
Jump to search
Definition
Let $\mathbf C, \mathbf D$ and $\mathbf J$ be metacategories.
Let $F: \mathbf C \to \mathbf D$ be a functor.
Then $F$ is said to create colimits of type $\mathbf J$ if and only if:
- For all $\mathbf J$-diagrams $C: \mathbf J \to \mathbf C$ in $\mathbf C$, given a colimit $\paren {{\varinjlim \,}_j \, FC_j, q_j}$ for $FC: \mathbf J \to \mathbf D$ in $\mathbf D$, the colimit:
- $\paren {{\varinjlim \,}_j \, C_j, p_j}$
- exists, and furthermore:
- $\map F {{\varinjlim \,}_j \, C_j} = {\varinjlim \,}_j \, FC_j$
- $F p_j = q_j$
- for all objects $j$ of $\mathbf J$.
Also see
Sources
- 2010: Steve Awodey: Category Theory (2nd ed.) ... (previous): $\S 5.6$: Definition $5.30$