Definition:Integer Division
Jump to navigation
Jump to search
Definition
Let $a, b \in \Z$ be integers such that $b \ne 0$..
From the Division Theorem:
- $\exists_1 q, r \in \Z: a = q b + r, 0 \le r < \left|{b}\right|$
where $q$ is the quotient and $r$ is the remainder.
The process of finding $q$ and $r$ is known as (integer) division.
Examples
$29$ Divided by $8$
- $29 \div 8 = 3 \rem 5$
Division by $-7$
\(\ds 1 \div \paren {-7}\) | \(=\) | \(\ds 0\) | \(\ds \rem 1\) | |||||||||||
\(\ds -2 \div \paren {-7}\) | \(=\) | \(\ds 1\) | \(\ds \rem 5\) | |||||||||||
\(\ds 61 \div \paren {-7}\) | \(=\) | \(\ds -8\) | \(\ds \rem 5\) | |||||||||||
\(\ds -59 \div \paren {-7}\) | \(=\) | \(\ds 9\) | \(\ds \rem 4\) |