Derivative of Absolute Value Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\size x$ be the absolute value of $x$ for real $x$.

Then:

$\dfrac \d {\d x} \size x = \dfrac x {\size x}$

for $x \ne 0$.


At $x = 0$, $\size x$ is not differentiable.


Corollary

Let $u$ be a differentiable real function of $x$.

Then:

$\dfrac \d {\d x} \size u = \dfrac u {\size u} \dfrac {\d u} {\d x}$

for $u \ne 0$.

At $u = 0$, $\size u$ is not differentiable.


Proof

\(\ds \frac \d {\d x} \size x\) \(=\) \(\ds \frac \d {\d x} \sqrt{x^2}\) Square of Real Number is Non-Negative
\(\ds \) \(=\) \(\ds \frac \d {\d x} \paren {x^2}^{\frac 1 2}\)
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {x^2}^{-\frac 1 2} \cdot 2 x\) Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \frac x {\sqrt{x^2} }\)
\(\ds \) \(=\) \(\ds \frac x {\size x}\)

$\Box$


Now consider $x = 0$.

From the definition of derivative:

\(\ds \valueat {\dfrac {\d \size x} {\d x} } {x \mathop = 0}\) \(=\) \(\ds \lim_{x \mathop \to 0}\frac {\size x - 0} {x - 0}\)
\(\ds \) \(=\) \(\ds \begin {cases} \lim_{x \mathop \to 0^+} \dfrac x x & : x > 0 \\ \lim_{x \mathop \to 0^-} \dfrac {-x} x & : x < 0 \end {cases}\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \begin {cases} 1 & : x > 0 \\ -1 & : x < 0 \end{cases}\)

From Limit iff Limits from Left and Right, the limit does not exist.

$\blacksquare$


Also see