Destructive Dilemma/Formulation 1/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds p \implies q\) \(\) \(\ds \)
\(\ds r \implies s\) \(\) \(\ds \)
\(\ds \vdash \ \ \) \(\ds \neg q \lor \neg s \implies \neg p \lor \neg r\) \(\) \(\ds \)


Proof

By the tableau method of natural deduction:

$p \implies q, r \implies s \vdash \neg q \lor \neg s \implies \neg p \lor \neg r$
Line Pool Formula Rule Depends upon Notes
1 1 $p \implies q$ Premise (None)
2 2 $r \implies s$ Premise (None)
3 3 $\neg q \lor \neg s$ Assumption (None)
4 4 $\neg q$ Assumption (None)
5 1, 4 $\neg p$ Modus Tollendo Tollens (MTT) 1, 4
6 1, 4 $\neg p \lor \neg r$ Rule of Addition: $\lor \II_1$ 5
7 7 $\neg s$ Assumption (None)
8 2, 7 $\neg r$ Modus Tollendo Tollens (MTT) 2, 7
9 2, 7 $\neg p \lor \neg r$ Rule of Addition: $\lor \II_2$ 8
10 1, 2, 3 $\neg p \lor \neg r$ Proof by Cases: $\text{PBC}$ 3, 4 – 6, 7 – 9 Assumptions 4 and 7 have been discharged
11 1, 2 $\neg q \lor \neg s \implies \neg p \lor \neg r$ Rule of Implication: $\implies \II$ 3 – 10 Assumption 3 has been discharged

$\blacksquare$