Difference of Two Squares/Algebraic Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a commutative ring whose zero is $0_R$.

Let $x, y \in R$.


Then:

$x \circ x + \paren {- \paren {y \circ y} } = \paren {x + y} \circ \paren {x + \paren {-y} }$


When $R$ is one of the standard sets of numbers, that is $\Z, \Q, \R$, and so on, then this translates into:

$x^2 - y^2 = \paren {x + y} \paren {x - y}$


Proof

\(\ds \paren {x + y} \circ \paren {x + \paren {-y} }\) \(=\) \(\ds x \circ x + y \circ x + x \circ \paren {-y} + y \circ \paren {-y}\) Distributivity of $\circ$ over $+$ in a ring
\(\ds \) \(=\) \(\ds x \circ x + x \circ y + x \circ \paren {-y} + y \circ \paren {-y}\) $R$ is a commutative ring
\(\ds \) \(=\) \(\ds x \circ x + x \circ \paren {y + \paren {-y} } + \paren {-\paren {y \circ y} }\) various ring properties
\(\ds \) \(=\) \(\ds x \circ x + x \circ 0_R + \paren {-\paren {y \circ y} }\)
\(\ds \) \(=\) \(\ds x \circ x + \paren {-\paren {y \circ y} }\)

$\blacksquare$