Digamma Function in terms of General Harmonic Number

From ProofWiki
Jump to navigation Jump to search

Corollary to Reciprocal times Derivative of Gamma Function

Let $z \in \C \setminus \Z_{\le 0}$.

Then:

$\ds \map \psi {z + 1} = -\gamma + \harm 1 z$

where:

$\psi$ is the digamma function
$\gamma$ denotes the Euler-Mascheroni constant
$\harm 1 z$ denotes the general harmonic number of order $1$ evaluated at $z$.


Proof

\(\ds \dfrac {\map {\Gamma'} {z + 1} } {\map \Gamma {z + 1} }\) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {\paren {z + 1} + n - 1} }\) Reciprocal times Derivative of Gamma Function
\(\ds \leadsto \ \ \) \(\ds \map \psi {z + 1}\) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n} }\) Definition of Digamma Function
\(\ds \) \(=\) \(\ds -\gamma + \harm 1 z\) Definition of General Harmonic Numbers

$\blacksquare$