Digamma Function of One

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi 1 = -\gamma$

where:

$\psi$ denotes the digamma function
$\gamma$ denotes the Euler-Mascheroni constant.


Proof

\(\ds \map \psi z\) \(=\) \(\ds \dfrac {\map {\Gamma'} z} {\map \Gamma z}\) Definition of Digamma Function
\(\ds \) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {z + n - 1} }\) Reciprocal times Derivative of Gamma Function
\(\ds \leadsto \ \ \) \(\ds \map \psi 1\) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 {1 + n - 1} }\) $z \gets 1$
\(\ds \) \(=\) \(\ds -\gamma + \sum_{n \mathop = 1}^\infty \paren {\frac 1 n - \frac 1 n}\)
\(\ds \) \(=\) \(\ds -\gamma\) noting that the summation is an empty sum

$\blacksquare$