Dimension of Bohr Radius

From ProofWiki
Jump to navigation Jump to search

Theorem

The Bohr radius has the dimension $\mathsf L$.


Proof

By definition, the Bohr radius is:

$a_0 = \dfrac {\varepsilon_0 h^2} {\pi \E^2 m_\E}$

where:

$\varepsilon_0$ denotes the vacuum permittivity
$h$ denotes Planck's constant
$\E$ denotes the elementary charge
$m_\E$ denotes the electron rest mass


We have:

\(\ds \varepsilon_0\) \(\text {has dimension}\) \(\ds \mathsf {M^{-1} L^{-3} T^4 I^2}\) Definition of Vacuum Permittivity
\(\ds h\) \(\text {has dimension}\) \(\ds \mathsf {M L^2 T^{-1} }\) Definition of Planck's Constant
\(\ds \E\) \(\text {has dimension}\) \(\ds \mathsf {I T}\) Definition of Elementary Charge
\(\ds m_\E\) \(\text {has dimension}\) \(\ds \mathsf M\) Definition of Mass of Electron
\(\ds \leadsto \ \ \) \(\ds a_0\) \(\text {has dimension}\) \(\ds \dfrac {\mathsf {M^{-1} L^{-3} T^4 I^2} \cdot \paren {\mathsf {M L^2 T^{-1} } }^2} {\paren {\mathsf {I T} }^2 \cdot \mathsf M}\)
\(\ds \) \(=\) \(\ds \dfrac {\mathsf {M L T^2 I^2} } {\mathsf {M I^2 T^2} }\)
\(\ds \) \(=\) \(\ds \mathsf L\)

$\blacksquare$