Dimension of Rydberg Constant

From ProofWiki
Jump to navigation Jump to search

Theorem

The Rydberg constant has the dimension $\mathsf {L^{-1} }$.


Proof

By definition, the Rydberg constant is:

$R_\infty = \dfrac {m_\E \E^4} {8 \varepsilon_0^2 h^3 c}$

where:

$m_\E$ denotes the electron rest mass
$\E$ denotes the elementary charge
$\varepsilon_0$ denotes the vacuum permittivity
$h$ denotes Planck's constant
$c$ denotes the speed of light.


We have:

\(\ds m_\E\) \(\text {has dimension}\) \(\ds \mathsf M\) Definition of Mass of Electron
\(\ds \E\) \(\text {has dimension}\) \(\ds \mathsf {I T}\) Definition of Elementary Charge
\(\ds \varepsilon_0\) \(\text {has dimension}\) \(\ds \mathsf {M^{-1} L^{-3} T^4 I^2}\) Definition of Vacuum Permittivity
\(\ds h\) \(\text {has dimension}\) \(\ds \mathsf {M L^2 T^{-1} }\) Definition of Planck's Constant
\(\ds c\) \(\text {has dimension}\) \(\ds \mathsf {L T^{-1} }\) Definition of Speed of Light
\(\ds \leadsto \ \ \) \(\ds R_\infty\) \(\text {has dimension}\) \(\ds \dfrac {\mathsf M \cdot \paren {\mathsf {I T} }^4} {\paren {\mathsf {M^{-1} L^{-3} T^4 I^2} }^2 \cdot \paren {\mathsf {M L^2 T^{-1} } }^3 \cdot \mathsf {L T^{-1} } }\)
\(\ds \) \(=\) \(\ds \dfrac {\mathsf {M I^4 T^4 } } {\mathsf {M^{-2} L^{-6} T^8 I^4} \cdot \mathsf {M^3 L^6 T^{-3} } \cdot \mathsf {L T^{-1} } }\)
\(\ds \) \(=\) \(\ds \dfrac {\mathsf {M I^4 T^4 } } {\mathsf {M L T^4 I^4} }\)
\(\ds \) \(=\) \(\ds \mathsf {L^{-1} }\)

$\blacksquare$