Dirichlet's Integral Form of Digamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number with a positive real part.


Then:

$\ds \map \psi z = \int_0^\infty \paren {\frac {e^{-t} } t - \frac 1 {t \paren {1 + t}^z } } \rd t$

where $\psi$ is the digamma function.


Proof

We have:

\(\ds \map \psi z\) \(=\) \(\ds \int_0^\infty \paren {\frac {e^{-t} } t - \frac {e^{-z t} } {1 - e^{-t} } } \rd t\) Gauss's Integral Form of Digamma Function
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac {\paren {e^{-t} }^z } {1 - e^{-t} } \rd t\) Linear Combination of Integrals


Let:

\(\ds \frac 1 {\paren {1 + x} }\) \(=\) \(\ds e^{-t}\) Integration by Substitution
\(\ds \leadsto \ \ \) \(\ds \paren {1 + x}\) \(=\) \(\ds e^t\)
\(\ds \leadsto \ \ \) \(\ds \map \ln {1 + x}\) \(=\) \(\ds t\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\paren {1 + x} } \rd x\) \(=\) \(\ds \d t\)


We also have:

\(\ds \lim_{x \mathop \to 0} \map \ln {1 + x}\) \(=\) \(\ds 0\) Natural Logarithm of 1 is 0
\(\ds \lim_{x \mathop \to \infty} \map \ln {1 + x}\) \(=\) \(\ds \infty\) Logarithm Tends to Infinity


Then:

\(\ds \map \psi z\) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac {\paren {e^{-t} }^z} {1 - e^{-t} } \rd t\)
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac {\paren {\frac 1 {\paren {1 + x} } }^z} {1 - \frac 1 {\paren {1 + x} } } \paren {\frac 1 {\paren {1 + x} } \rd x}\) substituting in second integral
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac {\paren {\frac 1 {\paren {1 + x} } }^z} {\paren {1 + x} - 1} \rd x\)
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac 1 {x \paren {1 + x}^z} \rd x\)
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {e^{-t} } t \rd t - \int_0^\infty \frac 1 {t \paren {1 + t}^z} \rd t\) $x \to t$
\(\ds \) \(=\) \(\ds \int_0^\infty \paren {\frac {e^{-t} } t - \frac 1 {t \paren {1 + t}^z} } \rd t\) Linear Combination of Integrals

$\blacksquare$


Source of Name

This entry was named for Johann Peter Gustav Lejeune Dirichlet.


Also see


Sources