Dirichlet Eta Function at Non-Positive Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \ge 0$ be a integer.

Then:

$\map \eta {-n} = \dfrac {\paren {-1}^{n + 1} \paren {2^{n + 1 } - 1} B_{n + 1} } {n + 1}$

where:

$B_n$ is the $n$th Bernoulli number
$\eta$ is the Dirichlet eta function


Proof

\(\ds \map \eta s\) \(=\) \(\ds \paren {1 - 2^{1 - s} } \map \zeta s\) Riemann Zeta Function in terms of Dirichlet Eta Function
\(\ds \leadsto \ \ \) \(\ds \map \eta {- n}\) \(=\) \(\ds \paren {1 - 2^{1 - \paren {-n} } } \map \zeta {-n}\) setting $s := - n$
\(\ds \) \(=\) \(\ds \paren {1 - 2^{n + 1} } \map \zeta {-n}\)
\(\ds \) \(=\) \(\ds \paren {1 - 2^{n + 1} } \paren {\paren {-1}^n \dfrac {B_{n + 1} } {n + 1} }\) Riemann Zeta Function at Non-Positive Integers
\(\ds \) \(=\) \(\ds \paren {-1} \times \paren {1 - 2^{n + 1 } } \times \paren {-1} \times \paren {\paren {-1}^n \dfrac {B_{n + 1} } {n + 1} }\) multiplying by $1$: $-1 \times -1 = 1$
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{n + 1} \paren {2^{n + 1 } - 1 } B_{n + 1} } {n + 1}\)

$\blacksquare$


Also see