Divergence of Product of Scalar Field with Curl of Vector Field

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a region of space.

Let $U$ be a scalar field over $R$.

Let $\mathbf A = \curl \mathbf B$ be a vector field over $R$ whose vector potential is $\mathbf B$.


Then:

$\map {\operatorname {div} } {U \curl \mathbf B} = \paren {\curl \mathbf B} \cdot \paren {\grad U}$

where:

$\operatorname {div}$ denotes the divergence operator
$\grad$ denotes the gradient operator
$\curl$ denotes the curl operator.


Proof

\(\ds \map {\operatorname {div} } {U \mathbf A}\) \(=\) \(\ds \map U {\operatorname {div} \mathbf A} + \mathbf A \cdot \grad U\) Product Rule for Divergence
\(\ds \leadsto \ \ \) \(\ds \map {\operatorname {div} } {U \curl \mathbf B}\) \(=\) \(\ds \map U {\operatorname {div} \curl \mathbf B} + \paren {\curl \mathbf B} \cdot \paren {\grad U}\) substituting $\curl \mathbf B$ for $\mathbf A$
\(\ds \) \(=\) \(\ds \paren {\curl \mathbf B} \cdot \paren {\grad U}\) Divergence of Curl is Zero

$\blacksquare$


Sources