Division Theorem/Half Remainder Version
Jump to navigation
Jump to search
Theorem
For every pair of integers $a, b$ where $b \ne 0$, there exist unique integers $q, r$ such that $a = q b + r$ and $-\dfrac {\size b} 2 \le r < \dfrac {\size b} 2$:
- $\forall a, b \in \Z, b \ne 0: \exists! q, r \in \Z: a = q b + r, -\dfrac {\size b} 2 \le r < \dfrac {\size b} 2$
In the above equation:
Proof
![]() | This theorem requires a proof. In particular: boring You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $2$: Divisibility Theory in the Integers: $2.1$ The Division Algorithm: Problems $2.1$: $6$