Element Commutes with Product of Commuting Elements
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a semigroup.
Let $x, y, z \in S$.
Let $x$ commute with both $y$ and $z$.
Then $x$ commutes with $y \circ z$.
General Theorem
Let $\struct {S, \circ}$ be a semigroup.
Let $\sequence {a_k}_{1 \mathop \le k \mathop \le n}$ be a sequence of terms of $S$.
Let $b \in S$ such that $b$ commutes with $a_k$ for each $k \in \closedint 1 n$.
Then $b$ commutes with $a_1 \circ \cdots \circ a_n$.
Proof
\(\ds x \circ \paren {y \circ z}\) | \(=\) | \(\ds \paren {x \circ y} \circ z\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {y \circ x} \circ z\) | $x$ commutes with $y$ | |||||||||||
\(\ds \) | \(=\) | \(\ds y \circ \paren {x \circ z}\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds y \circ \paren {z \circ x}\) | $x$ commutes with $z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {y \circ z} \circ x\) | $\circ$ is associative |
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 2$: Compositions: Exercise $2.16$
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 4$: Neutral Elements and Inverses: Theorem $4.5: \ 1^\circ$