Equivalence of Definitions of Matroid/Definition 3 implies Definition 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be an independence system.

Let $M$ also satisfy:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists Z \subseteq U \setminus V : \paren {V \cup Z \in \mathscr I} \land \paren {\size {V \cup Z} = \size U} \)      


Then $M$ satisfies:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Proof

Let $M$ satisfy condition $(\text I 3)$.


Let $U, V \in \mathscr I$ such that $\size V < \size U$.

By condition $(\text I 3)$:

$\exists Z : \exists Z \subseteq U \setminus V : \paren {V \cup Z \in \mathscr I} \land \paren {\size {V \cup Z} = \size U}$

Then:

$V \cup Z \ne V$


From Union with Empty Set:

$Z \ne \O$

Then:

$\exists x : x \in Z$

From Singleton of Element is Subset:

$\set x \subseteq Z$

From Set Union Preserves Subsets:

$V \cup \set x \subseteq V \cup Z$

From independence system axiom $(\text I 2)$:

$V \cup \set x \in \mathscr I$

By definition of a subset:

$x \in U \setminus V$

It follows that $M$ satisfies condition $(\text I 3)$.

$\blacksquare$