Equivalence of Definitions of Norm of Linear Transformation/Definition 3 Greater or Equal Definition 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $H, K$ be Hilbert spaces.

Let $A: H \to K$ be a bounded linear transformation.

Let:

$\lambda_3 = \sup \set {\norm {A h}_K: \norm h_H = 1}$

and

$\lambda_4 = \inf \set {c > 0: \forall h \in H: \norm {A h}_K \le c \norm h_H}$


Let:

$\lambda_3 \ge \lambda_4$


Proof

Lemma

$\forall \lambda > 0 : \norm{A 0_H}_K = \lambda \norm{0_H}_H$

$\Box$


Let $h \in H: h \ne 0_h$.

We have:

\(\ds \norm {\dfrac 1 {\norm h_H} h }_H\) \(=\) \(\ds \dfrac {\norm h_H}{\norm h_H}\) Norm Axiom $\text N 2$: Multiplicativity
\(\ds \) \(=\) \(\ds 1\)

and

\(\ds \dfrac {\norm{A h}_K} {\norm h_H}\) \(=\) \(\ds \norm {\dfrac 1 {\norm h_H} A h}_K\) Norm Axiom $\text N 2$: Multiplicativity
\(\ds \) \(=\) \(\ds \norm {A \paren{ \dfrac 1 {\norm h_H} h } }_K\) Linear Transformation Maps Zero Vector to Zero Vector
\(\ds \) \(\le\) \(\ds \lambda_3\) Definition of Supremum of Set

Hence:

$\forall h \in H: h \ne 0_h: \norm{A h}_K \le \lambda_3 \norm h_H$

From Lemma:

$\norm {A 0_H}_K = \lambda_3 \norm {0_H}_H$

Hence:

$\forall h \in H: \norm{A h}_K \le \lambda_3 \norm h_H$

That is,

$\lambda_3 \in \set {c > 0: \forall h \in H: \norm {A h}_K \le c \norm h_H}$


By definition of the infimum:

$\lambda_4 \le \lambda_3$

$\blacksquare$