Equivalence of Definitions of Normal Subset/3 iff 5

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Let $S \subseteq G$.


Then:

$S$ is a normal subset of $G$ by Definition 3

if and only if:

$S$ is a normal subset of $G$ by Definition 5.


Proof

3 implies 5

Suppose that $S$ is a normal subset of $G$ by Definition 3.

That is:

$\forall g \in G: g^{-1} \circ S \circ g \subseteq S$.


Let $x, y \in G$ such that $x \circ y \in S$.

Then:

\(\ds y \circ x\) \(=\) \(\ds e \circ \paren {y \circ x}\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \) \(=\) \(\ds \paren {x^{-1} \circ x} \circ \paren {y \circ x}\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds x^{-1} \circ \paren {x \circ y} \circ x\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds y \circ x\) \(\in\) \(\ds x^{-1} \circ S \circ x\) $x \circ y \in S$
\(\ds \leadsto \ \ \) \(\ds y \circ x\) \(\in\) \(\ds S\) by hypothesis: Definition 3 of Normal Subset

$\Box$


5 implies 3

Suppose that $S$ is a normal subset of $G$ by Definition 5.

That is:

$\forall x, y \in G: x \circ y \in S \implies y \circ x \in S$


Let $g \in G$.

Then:

\(\ds \forall x \in S: \, \) \(\ds e \circ x \circ e\) \(\in\) \(\ds S\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g \circ g^{-1} } \circ x \circ \paren {g \circ g^{-1} }\) \(\in\) \(\ds S\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds g \circ \paren {g^{-1} \circ x \circ g \circ g^{-1} }\) \(\in\) \(\ds S\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g \circ g^{-1} } \circ g\) \(\in\) \(\ds S\) by hypothesis: Definition 5 of Normal Subset
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g} \circ \paren {g^{-1} \circ g}\) \(\in\) \(\ds S\) Group Axiom $\text G 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds \paren {g^{-1} \circ x \circ g} \circ e\) \(\in\) \(\ds S\) Definition of Inverse Element
\(\ds \leadsto \ \ \) \(\ds \forall x \in S: \, \) \(\ds g^{-1} \circ x \circ g\) \(\in\) \(\ds S\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds g^{-1} \circ S \circ g\) \(\subseteq\) \(\ds S\) Definition of Subset Product

$\blacksquare$