Equivalence of Definitions of Quaternion Modulus

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf x = a \mathbf 1 + b \mathbf i + c \mathbf j + d \mathbf k$ be a quaternion, where $a, b, c, d \in \R$.

The following definitions of the concept of Quaternion Modulus are equivalent:

Definition 1

The (quaternion) modulus of $\mathbf x$ is the real-valued function defined and denoted as:

$\size {\mathbf x} := \sqrt {a^2 + b^2 + c^2 + d^2}$

Definition 2

Let $\mathbf x$ be expressed in matrix form:

$\mathbf x = \begin {bmatrix} a + b i & c + d i \\ -c + d i & a - b i \end {bmatrix}$

The (quaternion) modulus of $\mathbf x$ is the real-valued function defined and denoted as:

$\size {\mathbf x} := \sqrt {\map \det {\mathbf x} }$


Proof

Let $\mathbf x = \begin{bmatrix} a + b i & c + d i \\ -c + d i & a - b i \end{bmatrix}$ be the matrix form of quaternion $\mathbf x$.

\(\ds \size {\mathbf x}\) \(=\) \(\ds \sqrt {\map \det {\mathbf x} }\)
\(\ds \) \(=\) \(\ds \sqrt {\map \det {\begin{bmatrix} a + b i & c + d i \\ -c + d i & a - b i \end{bmatrix} } }\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {a + b i} \paren {a - b i} - \paren {c + d i} \paren {-c + d i} }\) Definition of Determinant of Matrix
\(\ds \) \(=\) \(\ds \sqrt {\paren {a^2 + b^2} - \paren {-c^2 - d^2} }\)
\(\ds \) \(=\) \(\ds \sqrt {a^2 + b^2 + c^2 + d^2}\)

$\blacksquare$