Equivalent Norms on Rational Numbers/Necessary Condition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ be norms on the rational numbers $\Q$.

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ be equivalent norms.


Then:

$\exists \alpha \in \R_{\gt 0}: \forall n \in \N: \norm n_1 = \norm n_2^\alpha$


Proof

Let $\norm {\, \cdot \,}_1$ and $\norm {\, \cdot \,}_2$ be equivalent.

By Norm is Power of Other Norm then:

$\exists \alpha \in \R_{\gt 0}: \forall q \in \Q: \norm q_1 = \norm q_2^\alpha$

In particular:

$\exists \alpha \in \R_{\gt 0}: \forall n \in \N: \norm n_1 = \norm n_2^\alpha$

$\blacksquare$


Sources