Euler's Tangent Identity/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z$ be a complex number.

Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.

Then:

$\tan z = \dfrac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }$


Proof

\(\ds \tan z\) \(=\) \(\ds \frac {\sin z} {\cos z}\) Definition of Complex Tangent Function
\(\ds \) \(=\) \(\ds \frac {e^{i z} - e^{-i z} } {2 i} / \frac {e^{i z} + e^{-i z} } 2\) Euler's Sine Identity and Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \frac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }\) multiplying top and bottom by $2 i$

$\blacksquare$


Sources