Every Operation is Distributive over Right Operation

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be an algebraic structure.

Let $\to$ denote the right operation on $S$.


Then $\circ$ is distributive over $\to$.


Proof

\(\ds \forall a, b, c \in S: \, \) \(\ds a \circ \paren {b \to c}\) \(=\) \(\ds a \circ c\) Definition of Right Operation
\(\ds \forall a, b, c \in S: \, \) \(\ds \paren {a \circ b} \to \paren {a \circ c}\) \(=\) \(\ds a \circ c\) Definition of Right Operation
\(\ds \leadsto \ \ \) \(\ds \forall a, b, c \in S: \, \) \(\ds a \circ \paren {b \to c}\) \(=\) \(\ds \paren {a \circ b} \to \paren {a \circ c}\) from above
\(\ds \forall a, b, c \in S: \, \) \(\ds \paren {a \to b} \circ c\) \(=\) \(\ds b \circ c\) Definition of Right Operation
\(\ds \forall a, b, c \in S: \, \) \(\ds \paren {a \circ c} \to \paren {b \circ c}\) \(=\) \(\ds b \circ c\) Definition of Right Operation
\(\ds \leadsto \ \ \) \(\ds \forall a, b, c \in S: \, \) \(\ds \paren {a \to b} \circ c\) \(=\) \(\ds \paren {a \circ c} \to \paren {b \circ c}\) from above

Hence the result by definition of distributive.

$\blacksquare$


Sources