Existence of Subdivision with Small Norm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\closedint a b$ be a closed real interval.

Let $\epsilon > 0$ be a positive real number.

Then, there exists a finite subdivision $P$ of $\closedint a b$ such that:

$\norm P < \epsilon$

where $\norm P$ denotes the norm of $P$.


Proof

By the Axiom of Archimedes, choose $N \in \N$ such that:

$N > \dfrac {b - a} \epsilon > 0$

For each $k \in \set {0, 1, \dotsc, N - 1, N}$, define:

$x_k = a + \dfrac k N \paren {b - a}$

We have:

\(\ds x_0\) \(=\) \(\ds a + \frac 0 N \paren {b - a}\) Definition of $x_k$
\(\ds \) \(=\) \(\ds a\)
\(\ds x_N\) \(=\) \(\ds a + \frac N N \paren {b - a}\) Definition of $x_k$
\(\ds \) \(=\) \(\ds b\)
\(\ds x_k - x_{k - 1}\) \(=\) \(\ds \paren {a + \frac k N \paren {b - a} } - \paren {a + \frac {k - 1} N \paren {b - a} }\) Definition of $x_k$
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac {b - a} N\)
\(\ds \) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x_{k - 1}\) \(<\) \(\ds x_k\)

Let $P = \set {x_0, x_1, \dotsc, x_{N - 1}, x_N}$.

From:

$x_0 = a$
$x_N = b$
$\forall k \in \set {1, \dotsc, N}: x_{k - 1} < x_k$

it follows that $P$ is a finite subdivision of $\closedint a b$.


Now:

\(\ds \norm P\) \(=\) \(\ds \max \set {x_k - x_{k - 1} : k \in \set {1, \dotsc, N} }\) Definition of Norm of Subdivision
\(\ds \) \(=\) \(\ds \max \set {\frac {b - a} N}\) $\paren 1$ holds for all $k$
\(\ds \) \(=\) \(\ds \frac {b - a} N\)
\(\ds \) \(<\) \(\ds \frac {b - a} {b - a} \epsilon\) Definition of $N$
\(\ds \) \(=\) \(\ds \epsilon\)

$\blacksquare$