Existential Quantifier Distributes over Disjunction

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map \phi x, \map \psi x$ be WFFs of the free variable $x$.

Then:

$\exists x: \paren {\map \phi x \lor \map \psi x} \dashv \vdash \paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$


Proof

Forward Implication

By the tableau method of natural deduction:

$\exists x: \paren {\map \phi x \lor \map \psi x} \vdash \paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x} $
Line Pool Formula Rule Depends upon Notes
1 1 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Premise
2 2 $\map \phi {x \gets x_0} \lor \map \psi {x \gets x_0}$ Assumption
3 3 $\map \phi {x \gets x_0}$ Assumption
4 3 $\exists x: \map \phi x$ Existential Generalisation 3
5 3 $\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$ Rule of Addition 4
6 6 $\map \psi {x \gets x_0}$ Assumption
7 6 $\exists x: \map \psi x$ Existential Generalisation 6
8 6 $\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$ Rule of Addition 7
9 2 $\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$ Proof by Cases 2, 3-5, 6-8
10 1 $\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$ Existential Instantiation 1, 2-9

$\Box$


Reverse Implication

By the tableau method of natural deduction:

$\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x} \vdash \exists x: \paren {\map \phi x \lor \map \psi x} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {\exists x: \map \phi x} \lor \paren {\exists x: \map \psi x}$ Premise
2 2 $\exists x: \map \phi x$ Assumption
3 3 $\map \phi {x \gets x_0}$ Assumption
4 3 $\map \phi {x \gets x_0} \lor \map \psi {x \gets x_0}$ Rule of Addition 3
5 3 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Existential Generalisation 4
6 2 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Existential Instantiation 2, 3-5
7 7 $\exists x: \map \psi x$ Assumption
8 8 $\map \psi {x \gets x_0}$ Assumption
9 8 $\map \phi {x \gets x_0} \lor \map \psi {x \gets x_0}$ Rule of Addition 8
10 8 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Existential Generalisation 9
11 7 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Existential Instantiation 7, 8-10
12 1 $\exists x: \paren {\map \phi x \lor \map \psi x}$ Proof by Cases 1, 2-6, 7-11

$\blacksquare$