Exponential of Sum/Real Numbers/Proof 5

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \R$ be real numbers.

Let $\exp x$ be the exponential of $x$.


Then:

$\map \exp {x + y} = \paren {\exp x} \paren {\exp y}$


Proof

This proof assumes the definition of $\exp$ as a series.


Then:

\(\ds \map \exp {x + y}\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {n!} \paren {x + y}^n\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {n!} \sum_{k \mathop = 0}^n \frac {n!} {k! \paren {n - k}!} x^k y^{n - k}\) Binomial Theorem
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \paren {\frac 1 {k!} x^k} \paren {\frac 1 {\paren {n - k}!} y^{n - k} }\)
\(\ds \) \(=\) \(\ds \paren {\sum_{n \mathop = 0}^\infty \frac {x^n} {n!} } \paren {\sum_{n \mathop = 0}^\infty \frac {y^n} {n!} }\) Definition of Cauchy Product
\(\ds \) \(=\) \(\ds \map \exp x \, \map \exp y\)

$\blacksquare$