External Direct Product Closure/General Result
Jump to navigation
Jump to search
Theorem
Let $\ds \struct {S, \circ} = \prod_{k \mathop = 1}^n S_k$ be the external direct product of the algebraic structures $\struct {S_1, \circ_1}, \struct {S_2, \circ_2}, \ldots, \struct {S_n, \circ_n}$.
Let $\struct {S_1, \circ_1}, \struct {S_2, \circ_2}, \ldots, \struct {S_n, \circ_n}$ all be closed algebraic structures.
Then $\struct {S, \circ}$ is also a closed algebraic structure.
Proof
Follows directly from External Direct Product Closure.
![]() | This needs considerable tedious hard slog to complete it. In particular: Fill in the detail. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
$\blacksquare$