Factorial Greater than Cube for n Greater than 5/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer such that $n > 5$.


Then $n! > n^3$.


Proof

For $n > 5$, notice that the following inequalities hold:

$2 \paren {n - 1} = 2 n - 2 > n + 5 - 2 > n$
$3 \paren {n - 2} = 3 n - 6 > n + 10 - 6 > n$

And thus:

\(\ds n!\) \(\ge\) \(\ds n \paren {n - 1} \paren {n - 2} \paren {3!}\)
\(\ds \) \(=\) \(\ds n \paren {2 \paren {n - 1} } \paren {3 \paren {n - 2} }\)
\(\ds \) \(>\) \(\ds n \paren n \paren n\)
\(\ds \) \(=\) \(\ds n^3\)

$\blacksquare$