Factors of Binomial Coefficient/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Theorem

For all $r \in \R, k \in \Z$:

$\paren {r - k + 1} \dbinom r {k - 1} = k \dbinom r k$


Proof

\(\ds \paren {r - k + 1} \dbinom r {k - 1}\) \(=\) \(\ds \paren {r - k + 1} \frac {r \paren {r - 1} \paren {r - 2} \cdots \paren {r - \paren {k - 1} + 1} } {\paren {k - 1} \paren {k - 2} \cdots 1}\) Definition of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac {r \paren {r - 1} \paren {r - 2} \cdots \paren {r - k + 1} } {\paren {k - 1} \paren {k - 2} \cdots 1}\)
\(\ds \) \(=\) \(\ds k \times \frac {r \paren {r - 1} \paren {r - 2} \cdots \paren {r - k + 1} } {k \paren {k - 1} \paren {k - 2} \cdots 1}\)
\(\ds \) \(=\) \(\ds k \dbinom r k\) Definition of Binomial Coefficient

$\blacksquare$