First Order ODE/x dy = k y dx

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ODE:

$(1): \quad x \rd y = k y \rd x$

has the general solution:

$y = C x^k$


Proof

$(1)$ can be expressed as:

\(\ds x \rd y\) \(=\) \(\ds k y \rd x\)
\(\ds \leadsto \ \ \) \(\ds \int \dfrac {\d y} y\) \(=\) \(\ds k \int \dfrac {\d x} x\) Solutions to Separable Differential Equation
\(\ds \leadsto \ \ \) \(\ds \ln y\) \(=\) \(\ds k \ln x + \ln C\)
\(\ds \) \(=\) \(\ds \map \ln {C x^k}\)
\(\ds y\) \(=\) \(\ds C x^k\)

$\blacksquare$