GCD of Integers with Common Divisor/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \Z$ be integers such that not both $a = 0$ and $b = 0$.

Let $k \in \Z_{>0}$ be a strictly positive integer.


Then:

$\gcd \set {k a, k b} = k \gcd \set {a, b}$

where $\gcd$ denotes the greatest common divisor.


Proof

\(\ds \exists x, y \in \Z: \, \) \(\ds \gcd \set {a k, b k}\) \(=\) \(\ds \paren {a k} x + \paren {b k} y\) Bézout's Identity: $\gcd \set {a k, b k}$ is the smallest such integer combination
\(\ds \) \(=\) \(\ds k \paren {a x + b y}\)
\(\ds \) \(=\) \(\ds k \gcd \set {a, b}\) Bézout's Identity

$\blacksquare$


Sources