Gauss's Hypergeometric Theorem/Corollary 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Gauss's Hypergeometric Theorem

Let $\map \Re {a - 1} < 0$.

Then:

$\ds \dfrac 1 a + \dfrac {a } {\paren {a + 1} 1!} + \dfrac {a \paren {a + 1} } {\paren {a + 2} 2!} + \dfrac {a \paren {a + 1} \paren {a + 2} } {\paren {a + 3} 3!} + \cdots = \dfrac {\pi} {\map \sin {\pi a } } $


Proof

Set $c - 1 = a$ in Corollary 1:

Before substitution:

\(\ds \sum_{k \mathop = 0}^\infty \dfrac {a^{\overline k} } { \paren {c - 1 + k} k!}\) \(=\) \(\ds \dfrac {\map \Gamma {c - 1} \map \Gamma {1 - a} } {\map \Gamma {c - a} }\) Corollary 1

After substitution:

\(\ds \sum_{k \mathop = 0}^\infty \dfrac {a^{\overline k} } { \paren {a + k} k!}\) \(=\) \(\ds \dfrac {\map \Gamma a \map \Gamma {1 - a} } {\map \Gamma {\paren {a + 1} - a} }\)
\(\ds \) \(=\) \(\ds \map \Gamma a \map \Gamma {1 - a}\) Definition of Gamma Function and $\map \Gamma 1 = 1$
\(\ds \) \(=\) \(\ds \dfrac {\pi} {\map \sin {\pi a } }\) Euler's Reflection Formula

$\blacksquare$


Sources