Gaussian Integers are Closed under Negation

From ProofWiki
Jump to navigation Jump to search

Theorem

The set of Gaussian integers $\Z \sqbrk i$ is closed under negation:

$\forall x \in \Z \sqbrk i: -x \in \Z \sqbrk i$


Proof

Let $x$ be a Gaussian integer.

Then:

\(\ds \exists a, b \in \Z: \, \) \(\ds x\) \(=\) \(\ds a + b i\) Definition of Gaussian Integer
\(\ds \leadsto \ \ \) \(\ds -x\) \(=\) \(\ds -a - b i\) Definition of Complex Negation Function
\(\ds \leadsto \ \ \) \(\ds -x\) \(\in\) \(\ds \Z \sqbrk i\) Definition of Negative Integer: $-a \in \Z$, and Integer Subtraction is Closed

$\blacksquare$