General Harmonic Number Additive Formula/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to General Harmonic Number Additive Formula

Let $n \in \N_{>0}$ be a non-zero natural number.

Then:

$\ds \sum_{k \mathop = 1}^{n - 1} \paren {\harm 1 {-\dfrac k n } } = -n \ln n$

where:

$\harm 1 x$ denotes the general harmonic number of order $1$ evaluated at $x$.
$\ln$ is the complex natural logarithm.


Proof

\(\ds \harm 1 {n x }\) \(=\) \(\ds \frac 1 n \sum_{k \mathop = 0}^{n - 1} \paren {\harm 1 {x - \dfrac k n } } + \ln n\) General Harmonic Number Additive Formula
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds \frac 1 n \sum_{k \mathop = 1}^{n - 1} \paren {\harm 1 {-\dfrac k n } } + \ln n\) $x \to 0$ and Harmonic Number $H_0 = 0$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^{n - 1} \paren {\harm 1 {-\dfrac k n } }\) \(=\) \(\ds - n \ln n\) rearranging

$\blacksquare$