General Harmonic Number Reflection Formula

From ProofWiki
Jump to navigation Jump to search

Theorem

$\harm r {x - 1} + \paren {-1}^r \harm r {-x} = \paren {1 + \paren {-1}^r} \map \zeta r + \dfrac {\paren {-1}^r} {\paren {r - 1}!} \map {\dfrac {\d^{r - 1} } {\d x^{r - 1} } } {\pi \map \cot {\pi x} }$

where:

$\harm r x$ denotes the general harmonic number of order $r$ evaluated at $x$
$\map \zeta r$ is the Riemann zeta function
$r \in \Z_{>0}$ and $x \in \C$ and $x \notin \Z$


Proof

Lemma 1

The expression:

$\harm r {x - 1} + \paren {-1}^r \harm r {-x}$

is defined on the domain $\C \setminus \Z$.

That is, on the set of complex numbers but specifically excluding the integers.

$\Box$


Lemma 2

$\ds \harm 1 {x - 1} - \harm 1 {-x} = -\pi \map \cot {\pi x}$

$\Box$


\(\ds \harm 1 {x - 1} - \harm 1 {-x}\) \(=\) \(\ds -\pi \map \cot {\pi x}\) Lemma $2$
\(\ds \leadsto \ \ \) \(\ds \map {\dfrac {\d^n} {\d x^n} } {\harm 1 {x - 1} - \harm 1 {-x} }\) \(=\) \(\ds \map {\dfrac {\d^n} {\d x^n} } {-\pi \map \cot {\pi x} }\) taking the $n$th derivative of each side
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {-1}^{n + 1} n! \paren {\map \zeta {n + 1} - \harm {n + 1} {x - 1} } } - \paren {\paren {-1}^{n + 1} n! \paren {\map \zeta {n + 1} - \harm {n + 1} {-x} } \paren {-1}^n}\) \(=\) \(\ds \map {\dfrac {\d^n} {\d x^n} } {-\pi \map \cot {\pi x} }\) Nth Derivative of General Harmonic Number Order One and Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {-1}^r \paren {r - 1}! \paren {\map \zeta r - \harm r {x - 1} } } - \paren {\paren {-1}^r \paren {r - 1}! \paren {\map \zeta r - \harm r {-x} } \paren {-1}^{r - 1} }\) \(=\) \(\ds \map {\dfrac {\d^{r - 1} } {\d x^{r - 1} } } {-\pi \map \cot {\pi x} }\) $n \to r - 1$
\(\ds \leadsto \ \ \) \(\ds \paren {\paren {\map \zeta r - \harm r {x - 1} } } + \paren {-1}^r \paren {\paren {\map \zeta r - \harm r {-x} } }\) \(=\) \(\ds \dfrac {\paren {-1}^r} {\paren {r - 1}! } \map {\dfrac {\d^{r - 1} } {\d x^{r - 1} } } {-\pi \map \cot {\pi x} }\) multiplying both sides by $\dfrac {\paren {-1}^r} {\paren {r - 1}! }$
\(\ds \leadsto \ \ \) \(\ds -\map \zeta r \paren {1 + \paren {-1}^r} + \paren {\harm r {x - 1} + \paren {-1}^r \harm r {-x} }\) \(=\) \(\ds \dfrac {\paren {-1}^r} {\paren {r - 1}!} \map {\dfrac {\d^{r - 1} } {\d x^{r - 1} } } {\pi \map \cot {\pi x} }\) multiply both sides by $-1$
\(\ds \leadsto \ \ \) \(\ds \harm r {x - 1} + \paren {-1}^r \harm r {-x}\) \(=\) \(\ds \paren {1 + \paren {-1}^r} \map \zeta r + \dfrac {\paren {-1}^r} {\paren {r - 1}! } \map {\dfrac {\d^{r - 1} } {\d x^{r - 1} } } {\pi \map \cot {\pi x} }\) adding $\paren {1 + \paren {-1}^r} \map \zeta r$ to both sides


Finally, from the Lemma $1$, we note that:

$\harm r {x - 1} + \paren {-1}^r \harm r {-x}$

is defined on the domain $\C \setminus \Z$.

$\blacksquare$


Sources