Generalized Sum Restricted to Non-zero Summands/Corollary

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $G$ be a commutative topological semigroup with identity $0_G$.


Let $\family{g_i}_{i \in I}$ be an indexed family of elements of $G$.


Let $K \subseteq I : \set{i \in I : g_i \ne 0_G} \subseteq K$

Let $h \in G$.


Then:

the generalized sum $\ds \sum_{i \mathop \in I} g_i$ converges to $h$

if and only if:

the generalized sum $\ds \sum_{k \mathop \in K} g_k$ converges to $h$

Proof

Let $J = \set{i \in I : g_i \ne 0_G}$.


We have:

\(\ds \sum_{i \mathop \in I} g_i\) \(\to\) \(\ds h\)
\(\ds \leadstoandfrom \ \ \) \(\ds \sum_{j \mathop \in J} g_j\) \(\to\) \(\ds h\) Generalized Sum Restricted to Non-zero Summands
\(\ds \leadstoandfrom \ \ \) \(\ds \sum_{k \mathop \in K} g_k\) \(\to\) \(\ds h\) Generalized Sum Restricted to Non-zero Summands

$\blacksquare$