Generalized Sum Restricted to Non-zero Summands/Necessary Condition

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $G$ be a commutative topological semigroup with identity $0_G$.


Let $\family{g }_{i \in I}$ be an indexed family of elements of $G$.


Let $J = \set{i \in I : g_i \ne 0_G}$

Let $h \in G$.


Let the generalized sum $\ds \sum_{i \mathop \in I} g_i$ converge to $h$.


Then:

the generalized sum $\ds \sum_{j \mathop \in J} g_j$ converges to $h$


Proof

Let $U \subseteq G$ be an open subset of $G$ such that $h \in U$.

By definition of convergent net:

$(1) \quad \exists F \subseteq I : F \ne \O : \forall E \subseteq I : E \supseteq F \implies \ds \sum_{i \mathop \in E} g_i \in U$

where $\ds \sum_{i \mathop \in E} g_i$ is the summation over $E$.


Let:

$F'= F \cap J$

From Set Difference and Intersection form Partition:

$F = F' \cup F \setminus J$


Let $E' \subseteq J$:

$E' \supseteq F'$

We have:

$E' \cap F \setminus J = \O$


Let:

$E = E' \cup F \setminus J$

From Set Union Preserves Subsets:

$E \supseteq F$

From $(1)$:

$\ds \sum_{i \mathop \in E} g_i \in U$


Case : $F \setminus J = \O$

Let:

$F \setminus J = \O$

From Union with Empty Set:

$E = E'$

Hence:

$\ds \sum_{i \mathop \in E'} g_i \in U$

$\Box$

Case : $F \setminus J \ne \O$

Let:

$F \setminus J \ne \O$

We have:

\(\ds \sum_{i \mathop \in E} g_i\) \(=\) \(\ds \sum_{i \mathop \in E'} g_i + \sum_{i \mathop \in F \setminus J} g_i\) Summation over Union of Disjoint Finite Index Sets
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in E'} g_i + \sum_{i \mathop \in F \setminus J} 0_G\) definitions of $F$ and $J$
\(\ds \) \(=\) \(\ds \sum_{i \mathop \in E'} g_i\) Definition of identity

Hence:

$\ds \sum_{i \mathop \in E'} g_i \in U$

$\Box$


In either case:

$\ds \sum_{i \mathop \in E'} g_i \in U$


Since $U$ was arbitrary, it follows that $\ds \sum_{j \mathop \in J} g_j$ converges to $h$ by definition.

$\blacksquare$