Generalized Sum of Constant Zero Converges to Zero

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $G$ be a commutative topological semigroup with identity $0_G$.


Let $\family{g_i}_{i \in I}$ be the indexed family of $G$ defined by:

$\forall i \in I : g_i = 0_G$


Then:

the generalized sum $\ds \sum_{i \mathop \in I} g_i$ converges to $0_G$

Proof

Let $\FF$ denote the set of finite subsets of $I$.


From Power of Identity is Identity:

$\forall F \in \FF : \ds \map \phi F = \sum_{i \mathop \in F} g_i = 0_G$


Hence the net $\ds \sum \set {g_i: i \in I}$ is a constant mapping.


From Constant Net is Convergent:

the generalized sum $\ds \sum_{i \mathop \in I} g_i$ converges to $0_G$

$\blacksquare$