Generalized Sum over Union of Disjoint Index Sets

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {G, +}$ be a commutative topological semigroup.

Let $I$ and $J$ be disjoint indexing sets.


Let $K = I \cup J$.

Let $\family{g_k}_{k \mathop \in K}$ be an indexed family of elements of $G$.

Let the generalized sums $\ds \paren{\sum_{i \mathop \in I} g_i}$ and $\ds \paren{\sum_{j \mathop \in J} g_j}$ converge.

Then:

the generalized sum $\ds \sum_{k \mathop \in K} g_k$ converges

and:

$\ds \sum_{k \mathop \in K} g_k = \paren{\sum_{i \mathop \in I} g_i} + \paren{\sum_{j \mathop \in J} g_j}$


Proof

Let $0_G$ be the identity of the semigroup $\struct {G, +}$.


Let $\family{f_k}_{k \mathop \in K}$ be an indexed family of elements of $G$ defined by:

$\forall k \in K : f_k = \begin{cases}

g_k & : k \in I \\ 0_G & : k \in J \end{cases}$


Let $\family{h_k}_{k \mathop \in K}$ be an indexed family of elements of $G$ defined by:

$\forall k \in K : h_k = \begin{cases}

0_G & : k \in I \\ g_k & : k \in J \end{cases}$


From Generalized Sum Restricted to Non-zero Summands:

$\ds \sum_{k \mathop \in K} f_k = \sum_{i \mathop \in I} g_i$

and:

$\ds \sum_{k \mathop \in K} h_k = \sum_{j \mathop \in J} g_j$


From Sum Rule for Convergent Generalized Sums:

$\ds \sum_{k \mathop \in K} \paren{f_k + h_k} = \sum_{k \mathop \in K} f_k + \sum_{k \mathop \in K} h_k = \sum_{i \mathop \in I} g_i + \sum_{j \mathop \in J} g_j$


We have:

\(\ds \forall k \in K: \, \) \(\ds f_k + h_k\) \(=\) \(\ds \begin{cases}

g_k + 0_G & : k \in I \\ 0_G + g_k & : k \in J \end{cases}\)

definition of $f$ and $h$
\(\ds \) \(=\) \(\ds \begin{cases}

g_k & : k \in I \\ g_k & : k \in J \end{cases}\)

Definition of Identity Element
\(\ds \) \(=\) \(\ds g_k\)


Hence:

$\ds \sum_{k \mathop \in K} g_k = \paren{\sum_{i \mathop \in I} g_i} + \paren{\sum_{j \mathop \in J} g_j}$

$\blacksquare$