Heaviside Expansion Formula
Jump to navigation
Jump to search
Theorem
Let $P, Q$ be polynomials with coefficients in $\C$.
Let $\deg Q \ge \deg P + 1$.
Let $\map Q z$ have a simple zero for $z \in X$.
Let $\map {\laptrans f} z = \dfrac {\map P z} {\map Q z}$.
Then:
- $\ds \map f t = \sum_{z \mathop \in X} e^{z t} \frac {\map P z} {\map {Q'} z}$
Proof
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Source of Name
This entry was named for Oliver Heaviside.
Sources
- 1999: Jerrold E. Marsden and Michael J. Hoffman: Basic Complex Analysis (3rd ed.): $8.2.3$: Heaviside Expansion Formula