Hensel's Lemma/P-adic Integers/Lemma 10

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.


Then:

$\forall x \in \Z_p: p^k x \equiv 0 \pmod{p^{k+1}\Z_p} \implies x \equiv 0 \pmod{p\Z_p}$

Proof

We have:

\(\ds p^k x\) \(\equiv\) \(\ds 0 \pmod{p^{k+1}\Z_p}\)
\(\ds \leadsto \ \ \) \(\ds p^k x\) \(\in\) \(\ds p^{k+1}\Z_p\) Definition of Congruence Modulo an Ideal
\(\ds \leadsto \ \ \) \(\ds \exists y \in \Z_p: \, \) \(\ds p^kx\) \(=\) \(\ds p^{k+1}y\) Definition of Principal Ideal
\(\ds \leadsto \ \ \) \(\ds \exists y \in \Z_p: \, \) \(\ds x\) \(=\) \(\ds py\) Divide by $p^k$
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds p\Z_p\) Definition of Principal Ideal
\(\ds \leadsto \ \ \) \(\ds x\) \(\equiv\) \(\ds 0 \pmod{p\Z_p}\) Definition of Congruence Modulo an Ideal

$\blacksquare$