Inequality Rule for Real Convergent Nets

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {\Lambda, \preceq}$ be a directed set.


Let $\family {x_\lambda}_{\lambda \mathop \in \Lambda}$ and $\family {y_\lambda}_{\lambda \mathop \in \Lambda}$ be indexed families of elements in $\R$.

Let $\family {x_\lambda}_{\lambda \mathop \in \Lambda}$ and $\family {y_\lambda}_{\lambda \mathop \in \Lambda}$ be convergent to the following limits:

$\ds \lim_{\lambda \mathop \in \Lambda} x_\lambda = l$
$\ds \lim_{\lambda \mathop \in \Lambda} y_\lambda = m$


Let there exist $\lambda \in \Lambda$ such that:

$\forall \mu \in \Lambda : \lambda \preceq \mu: x_\mu \le y_\mu$


Then:

$l \le m$


Proof

Aiming for a contradiction, suppose

$l > m$


Let $\epsilon = \dfrac {\paren{l - m}} 2$.

Hence:

$\epsilon > 0$

and:

$(1) \quad l - \epsilon = m + \epsilon$


By definition of convergence:

$\exists \lambda_1 \in \Lambda : \forall \mu \in \Lambda : \lambda_1 \preceq \mu \implies \size{l - x_\mu} < \epsilon$

and:

$\exists \lambda_2 \in \Lambda : \forall \mu \in \Lambda : \lambda_2 \preceq \mu \implies \size{m - y_\mu} < \epsilon$


From Closed Interval Defined by Absolute Value:

$(2) \quad \forall \mu \in \Lambda : \lambda_1 \preceq \mu \implies l - \epsilon < x_\mu$

and:

$(3) \quad \forall \mu \in \Lambda : \lambda_2 \preceq \mu \implies m + \epsilon > y_\mu$


By definition of directed set:

$\exists \mu \in \Lambda : \lambda, \lambda_1, \lambda_2 \preceq \mu$


We have:

\(\ds x_\mu\) \(>\) \(\ds l - \epsilon\) from $(2)$
\(\ds \) \(=\) \(\ds m + \epsilon\) from $(1)$
\(\ds \) \(>\) \(\ds y_\mu\) from $(3)$


This contradicts the hypothesis:

$\forall \mu \in \Lambda : \lambda \preceq \mu: x_\mu \le y_\mu$


Hence:

$l \le m$

$\blacksquare$