Intersection of Zero Loci is Zero Locus

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k$ be a field.

Let $n \in \N_{>0}$.

Let $A = k \sqbrk {X_1, \ldots, X_n}$ be the ring of polynomials in $n$ variables over $k$.

Let $\mathbb S \subseteq \powerset A$ be a subset of the power set of $A$.


Then:

$\ds \bigcap _{S \mathop \in \mathbb S} \map V S = \map V {\bigcup \mathbb S}$

where $\map V \cdot$ denotes the zero locus.


Proof

\(\ds x\) \(\in\) \(\ds \bigcap_{S \mathop \in \mathbb S} \map V S\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall S \in \mathbb S: \, \) \(\ds x\) \(\in\) \(\ds \map V S\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall S \in \mathbb S: \forall f \in S: \, \) \(\ds \map f x\) \(=\) \(\ds 0\) Definition of Zero Locus of Set of Polynomials
\(\ds \leadstoandfrom \ \ \) \(\ds \forall f \in \bigcup \mathbb S: \, \) \(\ds \map f x\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(\in\) \(\ds \map V {\bigcup \mathbb S}\)

$\blacksquare$