Inverse Cotangent of Imaginary Number

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\cot^{-1} } {i x} = - i \coth^{-1} x$


Proof

\(\ds y\) \(=\) \(\ds \map {\cot^{-1} } {i x}\)
\(\ds \leadsto \ \ \) \(\ds \cot y\) \(=\) \(\ds i x\) Definition of Inverse Cotangent
\(\ds \leadsto \ \ \) \(\ds i \cot y\) \(=\) \(\ds - x\) $i^2 = -1$
\(\ds \leadsto \ \ \) \(\ds \map \coth {i y}\) \(=\) \(\ds x\) Cotangent in terms of Hyperbolic Cotangent
\(\ds \leadsto \ \ \) \(\ds i y\) \(=\) \(\ds \coth^{-1} x\) Definition of Inverse Hyperbolic Cotangent
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds -i \coth^{-1} x\) multiplying both sides by $-i$

$\blacksquare$


Sources