Inverse Image of Direct Image of Inverse Image equals Inverse Image Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: S \to T$ be a mapping.

Let:

$f^\to: \powerset S \to \powerset T$ denote the direct image mapping of $f$
$f^\gets: \powerset T \to \powerset S$ denote the inverse image mapping of $f$

where $\powerset S$ denotes the power set of $S$.


Then:

$f^\gets \circ f^\to \circ f^\gets = f^\gets$

where $\circ$ denotes composition of mappings.


Proof

\(\ds \forall A \in \powerset S: \, \) \(\ds A\) \(\subseteq\) \(\ds \map {\paren {f^\gets \circ f^\to} } A\) Subset of Domain is Subset of Preimage of Image
\(\ds \leadsto \ \ \) \(\ds \forall B \in \powerset T: \, \) \(\ds \map {f^\gets} B\) \(\subseteq\) \(\ds \map {\paren {f^\gets \circ f^\to} } {\map {f^\gets} B}\) Image of Subset under Mapping is Subset of Image, setting $A = \map {f^\gets} B \in \powerset S$
and:
\(\ds \forall B \in \powerset T: \, \) \(\ds \map {\paren {f^\to \circ f^\gets} } B\) \(\subseteq\) \(\ds B\) Subset of Codomain is Superset of Image of Preimage
\(\ds \leadsto \ \ \) \(\ds \forall A \in \powerset S: \, \) \(\ds \map {\paren {f^\gets \circ f^\to \circ f^\gets} } B\) \(\subseteq\) \(\ds \map {f^\gets} B\) Image of Subset under Mapping is Subset of Image


Thus we have:

$\forall B \in \powerset T: \map {f^\gets} B \subseteq \map {\paren {f^\gets \circ f^\to \circ f^\gets} } B \subseteq \map {f^\gets} B$

and the result follows.

$\blacksquare$


Also see


Sources