Inverse of Cantor Pairing Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\pi : \N^2 \to \N$ be the Cantor pairing function.


Define $k : \N \to \N$ as:

$\map k z$ is the largest $k$ such that $T_k \le z$

where $T_k$ is the $k$-th triangular number.

Let $\pi_1 : \N \to \N$ be defined as:

$\ds \map {\pi_1} z = z - T_{\map k z}$

Let $\pi_2 : \N \to \N$ be defined as:

$\map {\pi_2} z = \map k z - \map {\pi_1} z$


Then:

$\map \pi {\map {\pi_1} z, \map {\pi_2} z} = z$
  • For every $x, y \in \N$:
$\map {\pi_1} {\map \pi {x, y}} = x$
$\map {\pi_2} {\map \pi {x, y}} = y$


Proof

By definition of $\map k z$, we have $T_{\map k z} \le z$.

Thus, $z - T_{\map k z} \ge 0$.

Therefore, $\pi_1$ is well-defined.


Aiming for a contradiction, suppose $\map {\pi_1} z > \map k z$.

That is:

$z > T_{\map k z} + \map k z$

Or:

$z \ge T_{\map k z} + \map k z + 1 = T_{\map k z + 1}$

which contradicts the maximality of $\map k z$.

Thus, by Proof by Contradiction:

$\map {\pi_1} z \le \map k z$

Therefore:

$\map k z - \map {\pi_1} z \ge 0$

and $\pi_2$ is well-defined.

$\Box$


Let $z \in \N$ be arbitrary.

We have:

\(\ds \map \pi {\map {\pi_1} z, \map {\pi_2} z}\) \(=\) \(\ds \frac 1 2 \paren {\map {\pi_1} z + \map {\pi_2} z} \paren {\map {\pi_1} z + \map {\pi_2} z + 1} + \map {\pi_1} z\) Definition of Cantor Pairing Function
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\map k z} \paren {\map k z + 1} + \map {\pi_1} z\) Definition of $\pi_2$
\(\ds \) \(=\) \(\ds T_{\map k z} + \map {\pi_1} z\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds z\) Definition of $\pi_1$

$\Box$


Let $x, y \in \N$ be arbitrary.

We have:

\(\ds \map \pi {x, y}\) \(=\) \(\ds \frac 1 2 \paren {x + y} \paren {x + y + 1} + x\) Definition of Cantor Pairing Function
\(\ds \) \(=\) \(\ds T_{x + y} + x\) Closed Form for Triangular Numbers

Since:

$T_{x + y} + x \ge T_{x + y}$

we have:

$\map k {\map \pi {x, y}} \ge x + y$

Since:

$x \le x + y$

we have:

$T_{x + y} + x \le T_{x + y} + \paren {x + y + 1} = T_{x + y + 1}$

Hence:

$\map k {\map \pi {x, y}} < x + y + 1$

Therefore:

$\map k {\map \pi {x, y}} = x + y$


It follows:

\(\ds \map {\pi_1} {\map \pi {x, y} }\) \(=\) \(\ds \map \pi {x, y} - T_{\map k {\map \pi {x, y} } }\) Definition of $\pi_1$
\(\ds \) \(=\) \(\ds \map \pi {x, y} - T_{x + y}\) Above
\(\ds \) \(=\) \(\ds T_{x + y} + x - T_{x + y}\) Above
\(\ds \) \(=\) \(\ds x\)

And:

\(\ds \map {\pi_2} {\map \pi {x, y} }\) \(=\) \(\ds \map k {\map \pi {x, y} } - \map {\pi_1} {\map \pi {x, y} }\) Definition of $\pi_2$
\(\ds \) \(=\) \(\ds x + y - x\) Both above
\(\ds \) \(=\) \(\ds y\)

$\blacksquare$