Klein Four-Group as Subgroup of S4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be the following subset of the symmetric group on $4$ letters $S_4$, expressed in two-row notation:

\(\ds e\) \(=\) \(\ds \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}\)
\(\ds a\) \(=\) \(\ds \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix}\)
\(\ds b\) \(=\) \(\ds \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix}\)
\(\ds c\) \(=\) \(\ds \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}\)


Then $G$ is an example of the Klein $4$-group.


Proof

By inspection, the Cayley table is constructed:

$\begin{array}{c|cccc}
 & e & a & b & c \\

\hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \\ \end{array}$

Again by inspection this can be seen to be the same as the Cayley table for the Klein $4$-group.

$\blacksquare$


Sources