Lamé's Theorem/Least Absolute Remainder/Lemma

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \Z_{>0}$ be (strictly) positive integers.

Let the Euclidean Algorithm: Least Absolute Remainder variant be employed to find the GCD of $a$ and $b$.

Suppose it takes $n$ cycles around the Euclidean Algorithm: Least Absolute Remainder variant to find $\gcd \set {a, b}$.

Then $\min \set {a, b} \ge P_{n + 1}$, where $P_n$ denotes the $n$-th Pell number.


Proof

Without loss of generality suppose $a \ge b$.

Let $q_i, r_i$ be the quotients and remainders of each step of the Euclidean Algorithm: Least Absolute Remainder variant, that is:

\(\ds a\) \(=\) \(\ds q_1 b + r_1\)
\(\ds b\) \(=\) \(\ds q_2 r_1 + r_2\)
\(\ds r_1\) \(=\) \(\ds q_3 r_2 + r_3\)
\(\ds \cdots\) \(\) \(\ds \)
\(\ds r_{n - 2}\) \(=\) \(\ds q_n r_{n - 1} + r_n\)
\(\ds r_{n - 1}\) \(=\) \(\ds q_{n + 1} r_n + 0\)

so $r_n = \gcd \set {a, b}$.


Note that for each $3 \le k \le n$, we have:

$r_{k - 2} = q_k r_{k - 1} + r_k$

From definition we have:

$-\dfrac {\size {r_{k - 1}}} 2 < r_k \le \dfrac {\size {r_{k - 1}}} 2$

which implies:

\(\text {(1)}: \quad\) \(\ds \size {r_k}\) \(\le\) \(\ds \frac {\size {r_{k - 1} } } 2\)

Also we have:

\(\ds \size {r_{k - 2} }\) \(=\) \(\ds \size {q_k} \size {r_{k - 1} } \pm \size {r_k}\) for some choice of $+$ or $-$
\(\ds \leadsto \ \ \) \(\ds \size {q_k}\) \(=\) \(\ds \frac {\size {r_{k - 2} } \pm \size {r_k} } {\size {r_{k - 1} } }\)
\(\ds \) \(\ge\) \(\ds \frac {\size {r_{k - 2} } - \size {r_k} } {\size {r_{k - 1} } }\)
\(\ds \) \(\ge\) \(\ds \frac {2 \size {r_{k - 1} } - \frac {\size {r_{k - 1} } } 2} {\size {r_{k - 1} } }\) from $(1)$
\(\ds \) \(=\) \(\ds \frac 3 2\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \size {q_k}\) \(\ge\) \(\ds 2\) as $\size {q_k}$ is an integer


Now we prove that $\size {r_{n - m}} \ge P_{m + 1}$ for $0 \le m < n$ by the Principle of Mathematical Induction:


Basis for the Induction

When $m = 0$, we have:

\(\ds \size {r_n}\) \(=\) \(\ds \size {\gcd \set {a, b} }\) Euclidean Algorithm
\(\ds \) \(\ge\) \(\ds 1\) Greatest Common Divisor is at least $1$
\(\ds \) \(=\) \(\ds P_1\) Definition of Pell Numbers

When $m = 1$, we have:

\(\ds \size {r_{n - 1} }\) \(\ge\) \(\ds 2 \size {r_n}\) from $(1)$
\(\ds \) \(\ge\) \(\ds 2\)
\(\ds \) \(=\) \(\ds P_2\) Definition of Pell Numbers

These are our base cases.


Induction Hypothesis

This is our induction hypothesis:

$\size {r_{n - k + 2}} \ge P_{k - 1}$
$\size {r_{n - k + 1}} \ge P_k$

for some $k$ where $2 \le k < n$.

It is to be demonstrated that:

$\size {r_{n - k}} \ge P_{k + 1}$


Induction Step

This is our induction step:

We have:

$r_{n - k} = q_{n - k + 2} r_{n - k + 1} + r_{n - k + 2}$

and:

$\size {r_{n - k}} = \size {q_{n - k + 2} } \size {r_{n - k + 1} } \pm \size {r_{n - k + 2}}$

for some choice of $+$ or $-$.


By $(2)$, we have $\size {q_{n - k + 2}} \ge 2$.

For the case $\size {q_{n - k + 2}} \ge 3$:

\(\ds \size {r_{n - k} }\) \(\ge\) \(\ds 3 \size {r_{n - k + 1} } - \size {r_{n - k + 2} }\)
\(\ds \) \(\ge\) \(\ds 2 \size {r_{n - k + 1} } + \size {r_{n - k + 2} }\) from $(1)$

For the case $\size {q_{n - k + 2}} = 2$, we have to show that $\size {r_{n - k} } = 2 \size {r_{n - k + 1} } + \size {r_{n - k + 2} }$.

In other words, we need to show that:

$\size {r_{n - k} } \ne 2 \size {r_{n - k + 1} } - \size {r_{n - k + 2} }$

We have:

\(\ds \size {r_{n - k} }\) \(\ge\) \(\ds 2 \size {r_{n - k + 1} }\) from $(1)$
\(\ds \) \(>\) \(\ds 2 \size {r_{n - k + 1} } - \size {r_{n - k + 2} }\) the case for $\size {r_{n - k + 2} }$ is covered in the $+$ case

Therefore, in both cases, we have:

\(\ds \size{r_{n - k} }\) \(\ge\) \(\ds 2 \size {r_{n - k + 1} } + \size {r_{n - k + 2} }\)
\(\ds \) \(\ge\) \(\ds 2 P_k + P_{k - 1}\) Induction Hypothesis
\(\ds \) \(=\) \(\ds P_{k + 1}\) Definition of Pell Numbers

We have shown that the result for $m = k - 2$ and $m = k - 1$ implies the result for $m = k$.

Thus we have $r_{n - m} \ge P_{m + 1}$ for all $0 \le m < n$.


Since $b \ge 2 \size {r_1}$, we can apply the same argument as the induction step and obtain:

\(\ds b\) \(\ge\) \(\ds 2 \size {r_1} + \size {r_2}\)
\(\ds \) \(\ge\) \(\ds 2 P_n + P_{n - 1}\) the result above
\(\ds \) \(=\) \(\ds P_{n + 1}\) Definition of Pell Numbers

$\blacksquare$