Laplace Transform of Identity Mapping/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\laptrans f$ denote the Laplace transform of a function $f$.

Let $\map {I_\R} t$ denote the identity mapping on $\R$ for $t > 0$.


Then:

$\laptrans {\map {I_\R} t} = \dfrac 1 {s^2}$

for $\map \Re s > 0$.


Proof

\(\ds \laptrans {\map {I_\R} t}\) \(=\) \(\ds \laptrans t\) Definition of Identity Mapping
\(\ds \) \(=\) \(\ds \int_0^{\to +\infty} t e^{-s t} \rd t\) Definition of Laplace Transform
\(\ds \) \(=\) \(\ds \intlimits {\frac {e^{-s t} } {-s} \paren {t - \frac 1 {-s} } } {t \mathop = 0} {t \mathop \to +\infty}\) Primitive of $x e^{a x}$
\(\ds \) \(=\) \(\ds -\frac 1 s \lim_{t \mathop \to +\infty} \frac t { e^{s t} } - \paren {0 - \frac 1 {s^2} }\) Exponential of Zero and One, Exponent Combination Laws: Negative Power
\(\ds \) \(=\) \(\ds 0 + \frac 1 {s^2}\) Limit at Infinity of Polynomial over Complex Exponential
\(\ds \) \(=\) \(\ds \frac 1 {s^2}\)

$\blacksquare$