Lattice and Ring of Real-Valued Functions forms Ordered Ring

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {S, \tau_{_S} }$ be a topological space.

Let $\R$ denote the real number line.


Let $\struct{\R^S, +, \times}$ be the ring of real-valued functions from $S$ to $\R$.

Let $\struct{\R^S, \vee, \wedge, \le}$ be the lattice of real-valued functions from $S$ to $\R$.


Then:

$\struct{\R^S, +, \times, \le}$ is an ordered ring


Proof

From Structure Induced by Group Operation is Group:

the zero of $\struct{\R^S, +, \times}$ is the constant mapping $0_{R^S} : S \to R$ defined by:
$\forall s \in S : \map {0_{R^S}} s = 0_R$


It needs to be shown that the order $\le$ on the lattice of real-valued functions satisies the ring compatible ordering axioms:

\((\text {OR} 1)\)   $:$   $\le$ is compatible with $+$:      \(\ds \forall f, g, h \in \R^S:\)    \(\ds f \le g \)   \(\ds \implies \)   \(\ds \paren {f + h} \le \paren {g + h} \)      
\((\text {OR} 2)\)   $:$   Product of Positive Elements is Positive      \(\ds \forall f, g \in \R^S:\)    \(\ds 0_{\R^S} \le f, 0_{\R^S} \le g \)   \(\ds \implies \)   \(\ds 0_{\R^S} \le f g \)      


$\paren{\text {OR} 1}$

Let $f, g, h \in \R^S$.

Let $f \le g$.

Hence:

$\forall s \in S: \map f s \le \map g s$


We have:

\(\ds \forall s \in S: \, \) \(\ds \map {\paren{f + h} } s\) \(=\) \(\ds \map f s + \map h s\) pointwise addition
\(\ds \) \(\le\) \(\ds \map g s + \map h s\) Real Numbers form Ordered Field
\(\ds \) \(=\) \(\ds \map {\paren{g + h} } s\) pointwise addition


By definition of lattice of real-valued functions:

$\paren {f + h} \le \paren {g + h}$


Since $f, g$ and $h$ were arbitrary:

$\forall f, g, h \in \R^S : f \le g \implies \paren {f + h} \le \paren {g + h}$

$\Box$

$\paren{\text {OR} 2}$

Let $f, g \in \R^S$.

Let $0_{\R^S} \le f, 0_{\R^S} \le g$.

Hence:

$\forall s \in S: 0 \le \map f s, 0 \le \map g s$


We have:

\(\ds \forall s \in S: \, \) \(\ds 0\) \(\le\) \(\ds \map f s \map g s\) Real Numbers form Ordered Field
\(\ds \) \(=\) \(\ds \map {\paren{fg} } s\) pointwise multiplication


By definition of lattice of real-valued functions:

$0_{\R^S} \le f g$


Since $f$ and $g$ were arbitrary:

$\forall f, g \in \R^S : 0_{\R^S} \le f, 0_{\R^S} \le g \implies 0_{\R^S} \le f g$

$\Box$


Thus the ring compatible ordering axioms are seen to hold for the order $\le$ on the lattice of real-valued functions.

$\blacksquare$


Sources

1960: Leonard Gillman and Meyer Jerison: Rings of Continuous Functions: Chapter $1$: Functions on a Topological Space, $\S 1.2$