Law of Tangents/Corollary/Proof 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Law of Tangents

$\tan \dfrac {A - B} 2 = \dfrac {a - b} {a + b} \cot \dfrac C 2$


Proof

\(\ds \dfrac {a - b} {a + b}\) \(=\) \(\ds \dfrac {2 R \sin A - 2 R \sin B} {2 R \sin A + 2 R \sin B}\) Law of Sines
\(\ds \) \(=\) \(\ds \dfrac {2 \cos \frac {A + B} 2 \sin \frac {A - B} 2} {2 \sin \frac {A + B} 2 \cos \frac {A - B} 2}\) Sine minus Sine, Sine plus Sine
\(\ds \) \(=\) \(\ds \dfrac {\tan \frac {A - B} 2} {\tan \frac {A + B} 2}\) Tangent is Sine divided by Cosine and simplification
\(\ds \) \(=\) \(\ds \dfrac {\tan \frac {A - B} 2} {\tan \frac {180 \degrees - C} 2}\) Sum of Angles of Triangle equals Two Right Angles
\(\ds \) \(=\) \(\ds \dfrac {\tan \frac {A - B} 2} {\map \tan {90^\circ - \frac C 2} }\) simplification
\(\ds \) \(=\) \(\ds \dfrac {\tan \frac {A - B} 2} {\cot \dfrac C 2}\) Tangent of Complement equals Cotangent
\(\ds \leadsto \ \ \) \(\ds \dfrac {a - b} {a + b} \cot \dfrac C 2\) \(=\) \(\ds \tan \frac {A - B} 2\) Tangent of Complement equals Cotangent

Hence the result.

$\blacksquare$


Sources